내용
반도체나 모바일 기기 산업과 같이 복잡성과 프로그래밍에 대한 비용 때문에 자동화가 어려운 분야가 있습니다. 이러한 경우 인간 검사자에게 의존하는 것이 일반적이나, 서로 다른 여러 개의 부품, 조립, 장면 등 판단을 기준으로 한 결정을 인간 검사자를 통해 처리하는 작업을 비효율적입니다. 신뢰성 면에서도 기계와 비교했을 때 인간 검사자는 피로가 쌓이면 실수를 하게 될 확률이 높아집니다.
특징
1. 결함 검출
자동화 검사 시스템은 까다로운 이미지 품질 조건 하에 과도한 돋음이나 언더컷 된 용접과 같이 두드러지는 부품간의 변화를 수용할 수 있어야 합니다. 딥러닝 기반 솔루션은 너무 시간 소모적이고 경우에 따라서는 검사가 불가능할 수도 있는 룰 베이스 프로그래밍 없이도 관심 영역을 고정시켜 부품간 커다란 변화를 포함한 용접을 검사할 수 있습니다.
결함 검출을 위한 코그넥스의 딥러닝 툴은 양품(또는 통과) 및 불량(실패)으로 라벨링 된 표본 이미지 세트를 트레이닝한
후 다양한 종류의 용접 결함을 식별할 수 있게 됩니다. 코그넥스 딥러닝은 이러한 이미지를 토대로 정상적인 용접
모양의 기준 모델뿐 아니라, 이미 지나 반사광으로 인한 외관상의 변형을 포함해 허용되지 않는 결함의 모델을 구축할 수 있습니다.
2. 광학문자 인식(OCR)
전자 부품과 모듈에 인쇄된 숫자와 문자 같이, 칩에 인쇄된 시리얼 번호는 변형, 스큐잉, 불량한 에칭 등의 문제가 있을 수 있습니다. 모든 문자열을 한번에 트레이닝하고, 잘못 표기된 문자는 제거하며, 동일 문자를 여러 번 트레이닝한 후
트레이닝 된 글꼴을 새로운 애플리케이션에 로딩하거나 저장할 수 있는 최상의 툴이라 하더라도 트레이닝에 오랜
시간이 소요되거나, 여전히 변형된 문자를 식별하는데 문제가 있을 수 있습니다.
딥러닝 기반 툴은 사전에 트레이닝된 라이브러리를 사용해 문자를 인식하고 검증하므로, 변화가 발생하더라도 테스트 및 검증 단계에서 시스템에 누락된 문자만 다시 트레이닝하면 됩니다. 따라서 검사 시스템이 보다 높은 정확도를
제공하고 재트레이닝으로 인한 가동 중단을 최소화할 수 있습니다.
3. 조립 검증
머신비전 시스템은 여러 관심 영역을 토대로 트레이닝을 거쳐 개별 구성품을 식별하도록 학습할 수 있지만, 조명 대비,
원근 및 방향의 변화, 반사광으로 인한 외관의 변화로 시스템에 혼동이 발생할 수 있습니다. 특히 구성품이 서로 가깝고
조밀하게 채워진 PCB는 머신 비전 시스템으로 개별 부품을 구분하기가 어려워 검사가 자칫 실패할 수도 있습니다. 인간
검사자는 구성품을 구분할 수는 있지만, 고속 처리량 요구 조건을 충족할 수는 없습니다.
이러한 검사를 룰 베이스 알고리즘으로 프로그래밍하는 작업은 시간 소모적이며, 오류가 발생하기 쉽고 현장에서 유지관리가 까다롭다는 점은 두말할 필요가 없습니다. 다행히도 딥러닝 기반 비전 시스템은 컴퓨터의 속도와 강력한 성능
면에서 추가적인 이점을 제공하는 한편, 인간 검사자가 가진 유연성, 분별력, 판단 기반 의사결정과 견줄 만한 성능을
갖추고 있습니다.
4. 분류
전자 커패시터는 유형을 비롯해 크기, 색상별로 종류가 다양한 구성품의 좋은 예입니다. 커패시터를 분류해야 하는
제조업체는 여러 개의 분류를 포함한 단일 이미지를 감지하는 까다로운 작업에 직면하였습니다. 예를 들어, 블랙 마킹이
있는 골드 세라믹 커패시터, 블루 마킹이 있는 골드 전기 커패시터가 있습니다. 검사 시스템이 제조업체의 기준에 따라
구성품을 분류해 색상과 마킹을 기준으로 전기 커패시터를 구분하고 나머지 기준은 무시해야 합니다.
이 작업은 자동으로 처리하기 위해 검사 애플리케이션 엔지니어는 딥러닝을 솔루션으로 모색해야 합니다. 감시 모드에서 작동하는 딥러닝 기반 소프트웨어는 선택적 특성 그룹을 검출하고 각 커패시터의 개별 특성간을 구분하면서 같은
유형 내의 추가적인 변형은 무시하도록 트레이닝할 수 있습니다. 딥러닝 기반 시스템은 단일 이미지 내의 구성품 하나에 대한 여러 유형을 정확히 분류하여 정렬할 수 있으며, 이는 머신비전보다 훨씬 큰 이점을 선사합니다.
COGNEX 제품 적용 솔루션 참조 : www.xvision.co.kr
머신비전 관련 문의처 ☞ (주)아이디맥스 02-838-1170
공장 자동화를 위한 인공지능 딥러닝 : www.newbrain.co.kr 기술영업문의 : sales@idmax.co.kr
자동인식전문기업 IDMAX : www.idmax.co.kr 기술영업문의 : sales@idmax.co.kr
'코그넥스 > 딥러닝' 카테고리의 다른 글
COGNEX(코그넥스) 딥러닝이 자동차 산업 내 검사를 자동화하는 방법 (0) | 2021.03.29 |
---|---|
COGNEX(코그넥스) 딥러닝 조립 검증 툴로 다양한 구성품 또는 부품 구성을 확인 (0) | 2021.03.26 |
COGNEX(코그넥스) 딥러닝을 통해 생명 과학 산업에서 검사 자동화를 구현하는 방법 (0) | 2021.03.15 |
COGNEX(코그넥스) In-Sight D900으로 인라인 검사를 자동화할 수 있는 3가지 이유 (0) | 2021.02.24 |
COGNEX(코그넥스) 딥러닝 기반 OCR을 사용하여 어떤 조건에서든 코드를 판독 (0) | 2021.02.19 |